FULLY EDUCATIONAL WEBSITE

Got Frustrated of the Exams...???
Searching for sample Question Papers...???
Good Bye to hard work and Hai to smart work...


Flag

Latest NewsAnna University Exam Time Table for Nov/Dec 2014, Jan 2015 Exams - 3rd, 5th, 7th sem| Timetable Link1| Timetable Link2-Latest News
Latest NewsAnna Univ. UG/PG Nov/Dec 2013 revaluation results| Revaluation Link1Updated ResultsLatest News

Control System Competitive Questions with Answers: Part-4

, by questionbank2u

Control System Competitive Questions with Answers: Part-4

CONTROL SYSTEM SOLVED COMPETITIVE QUESTIONS:

[1] An open loop system represented by the transfer function G(s) = (s-1) / (s+2)(s+3) is
A. stable and of the minimum phase type
B. stable and of the non-minimum phase type
C. unstable and of the minimum phase type
D. unstable and of the non-minimum phase type

Ans:B

[2] The open loop transfer function G(s) of a unity feedback control system is given as,
                          G(s) = [ k(s+2/3)  /  s2(s+2) ]
From the root locus, it can be inferred that when k tends to positive infinity,
A. three roots with nearly equal real parts exist on the left half of the s-plane
B. one real root is found on the right half of the s-plane
C. the root loci cross the jω axis for a finite value of k; k≠0
D. three real roots are found on the right half of the s-plane

Ans:A

[3] Given that


then the value of A3 is  [GATE2012]
        a. 15A+12I
        b. 19A+30I
        c. 17A+15I
        d. 17A+21I

Ans:B

[4] The matrix [A]=
                                





is decomposed into a product of a lower triangular matrix [L] and an upper triangular matrix [U]. The properly decomposed[L] and [U] matrices respectively are............The options A,B,C,D are given below.





















Ans: none of the above

[5] The input x(t) of a system are related as y(t) =  ∫t-∞ x(τ)cos(3τ)dτ. The system is [GATE2012]

       a. time-invariant and stable
       b. stable and not time-invariant
       c. time-invariant  and not stable 
       d. not time-invariant and not stable

Ans: B
 
[6]The feedback system shown below oscillates at 2 rad/s when [GATE2012]
       a. k=2 and a=0.75
       b. k=3 and a=0.75
       c. k=4 and a=0.5
       d. k=2 and a=0.5

Ans: A
 
[7] The Fourier transform of a signal h(t) is H(jω) = (2cosω)(sin2ω)/ω. The value of h(0) is [GATE2012]
         a. 1/4
         b. 1/2
         c. 1
         d. 2

Ans: C
 
[8] The state variable description of an LTI system is given by
where y is the output and u is the input.The system is controllable for, [GATE2012]
        a. a1≠0,a2=0,a3≠0
        b. a1=0,a2=0,a30
        c. a1=0,a2=0,a3=0
        d. a10,a20,a3=0

Ans:D

[9] The state transition diagram for the logic circuit shown is  [GATE2012]

Ans: D


[10] Given that
then the value of A3 is  [GATE2012]
        a. 15A+12I
        b. 19A+30I
        c. 17A+15I
        d. 17A+21I

Ans: B


0 comments:

Labels